Applications of Second Order Blind Identification to High-Density EEG-Based Brain Imaging: A Review
نویسنده
چکیده
In the context of relating specific brain functions to specific brain structures, second-order blind identification (SOBI) is one of the blind source separation algorithms that have been validated extensively in the data domain of human high-density EEG. Here we provide a review of empirical data that (1) validate the claim that SOBI is capable of separating correlated neuronal sources from each other and from typical noise sources present during an EEG experiment; (2) demonstrating the range of experimental conditions under which SOBI is able to recover functionally and neuroanatomically meaningful sources; (3) demonstrating crossas well as within-subjects (cross-time) reliability of SOBI-recovered sources; (4) demonstrating efficiency of SOBI separation of neuronal sources. We conclude that SOBI may offer neuroscientists as well as clinicians a cost-effective way to image the dynamics of brain activity in terms of signals originating from specific brain regions using the widely available EEG recording technique.
منابع مشابه
A review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملValidation of SOBI components from high-density EEG.
Second-order blind identification (SOBI) is a blind source separation (BSS) algorithm that can be used to decompose mixtures of signals into a set of components or putative recovered sources. Previously, SOBI, as well as other BSS algorithms, has been applied to magnetoencephalography (MEG) and electroencephalography (EEG) data. These BSS algorithms have been shown to recover components that ap...
متن کاملApplications of gold nanoparticles for medical imaging
Background & Aim: Molecular imaging enables us to non-invasively visualize tissue microstructures and lesion characterization, allowing accurate diagnosis of diseases at early stages. A successful molecular imaging requires a nontoxic contrast agent with high sensitivity. Nowadays, a wide range of nanoparticles have been developed as contrast agents for medical imaging modalities. Here, we revi...
متن کامل